IoU-uniform R-CNN: Breaking through the limitations of RPN

نویسندگان

چکیده

• We reveals the importance of solving limitations RPN and our proposed IoU-uniform R-CNN can alleviate IoU distribution imbalance inadequate training samples by generating with uniform distribution. improve performance prediction branch eliminating feature offsets RoIs at inference. Our method consistently obtains significant improvements over multiple state-of-the-art detectors. Specially, it achieves 2.4 AP improvement than Faster (with ResNet 101-FPN backbone) on MS COCO dataset. Region Proposal Network (RPN) is cornerstone two-stage object It generates a sparse set proposals alleviates extrem foreground-background class problem during training. However, we find that potential detector has not been fully exploited due to quantity generated RPN. With increasing intersection union (IoU), exponentially smaller numbers positive would lead skewed towards lower IoUs, which hinders optimization high levels. In this paper, break through RPN, propose IoU-Uniform R-CNN, simple but effective directly for regression as well branch. Besides, inference, helps NMS procedure preserving accurately localized bounding box. Extensive experiments PASCAL VOC dataset show effectiveness method, its compatibility adaptivity many detection architectures. The code made publicly available https://github.com/zl1994/IoU-Uniform-R-CNN .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

R-CNN minus R

Deep convolutional neural networks (CNNs) have had a major impact in most areas of image understanding, including object category detection. In object detection, methods such as R-CNN have obtained excellent results by integrating CNNs with region proposal generation algorithms such as selective search. In this paper, we investigate the role of proposal generation in CNN-based detectors in orde...

متن کامل

ME R-CNN: Multi-Expert R-CNN for Object Detection

Recent CNN-based object detection methods have drastically improved their performances but still use a single classifier as opposed to ”multiple experts” in categorizing objects. The main motivation of introducing multi-experts is twofold: i) to allow different experts to specialize in different fundamental object shape priors and ii) to better capture the appearance variations caused by differ...

متن کامل

Interpretable R-CNN

This paper presents a method of learning qualitatively interpretable models in object detection using popular two-stage region-based ConvNet detection systems (i.e., R-CNN) [22, 61, 9, 26]. R-CNN consists of a region proposal network and a RoI (Region-of-Interest) prediction network.By interpretable models, we focus on weaklysupervised extractive rationale generation, that is learning to unfold...

متن کامل

Face R-CNN

Faster R-CNN is one of the most representative and successful methods for object detection, and has been becoming increasingly popular in various objection detection applications. In this report, we propose a robust deep face detection approach based on Faster R-CNN. In our approach, we exploit several new techniques including new multi-task loss function design, online hard example mining, and...

متن کامل

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2021

ISSN: ['1873-5142', '0031-3203']

DOI: https://doi.org/10.1016/j.patcog.2021.107816